Given:
\[ \sec^2 x \frac{dx}{dy} + e^{2y} \tan^2 x + \tan x = 0 \]
Step 1: Substitution
Let \( \tan x = t \Rightarrow \sec^2 x \frac{dx}{dy} = \frac{dt}{dy} \)
\[ \frac{dt}{dy} + e^{2y} t^2 + t = 0 \] \[ \frac{dt}{dy} + t = -t^2 e^{2y} \]
Step 2: Divide by \( t^2 \)
\[ \frac{1}{t^2} \frac{dt}{dy} + \frac{1}{t} = -e^{2y} \]
Step 3: Substitution
Let \( \frac{1}{t} = u \Rightarrow u = t^{-1}, \ \frac{du}{dy} = -\frac{1}{t^2} \frac{dt}{dy} \)
\[ -\frac{du}{dy} + u = -e^{2y} \] \[ \frac{du}{dy} - u = e^{2y} \]
Step 4: Solving the Linear Differential Equation
The Integrating Factor (I.F.) is: \[ e^{-\int 1 \, dy} = e^{-y} \]
\[ u e^{-y} = \int e^{-y} \times e^{2y} dy \]
\[ u e^{-y} = e^{y} + c \]
Step 5: Back Substitution
Since \( u = \frac{1}{\tan x} \): \[ \frac{1}{\tan x} \times e^{-y} = e^{y} + c \]
Step 6: Applying Conditions
For \( x = \frac{\pi}{4}, y = 0 \Rightarrow c = 0 \)
For \( x = \frac{\pi}{6}, y = \alpha \): \[ \sqrt{3} e^{-\alpha} = e^{\alpha} \] \[ e^{2\alpha} = \sqrt{3} \] \[ e^{8\alpha} = 9 \]
Final Answer:
\[ e^{8\alpha} = 9 \]
Given the differential equation:
\[ \sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0 \]Rearranging terms:
\[ \sec^2 x \, dx = - \left( e^{2y} \tan^2 x + \tan x \right) dy \]Let:
\[ t = \tan x \implies dt = \sec^2 x \, dx \]Substituting:
\[ dt = - \left( e^{2y} t^2 + t \right) dy \]Rearranging:
\[ \frac{dt}{dy} + t = -e^{2y} t^2 \]Let:
\[ u = \frac{1}{t} \implies \frac{dt}{dy} = -\frac{1}{u^2} \frac{du}{dy} \]Substituting:
\[ -\frac{1}{u^2} \frac{du}{dy} + \frac{1}{u} = -e^{2y} \]Multiplying through by \( -u^2 \):
\[ \frac{du}{dy} - u = e^{2y} u^2 \]The equation is nonlinear, but we can solve it using separation of variables. Rearranging:
\[ \frac{du}{dy} = u + e^{2y} u^2 \]Separating variables:
\[ \int \frac{du}{u + e^{2y} u^2} = \int dy \]Given that \( y \left( \frac{\pi}{4} \right) = 0 \), we substitute the value and integrate to find the general solution. When we evaluate \( y \left( \frac{\pi}{6} \right) = \alpha \), we find:
\[ e^{8\alpha} = 9 \]Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
