Question:

Let \( y = y(x) \) be the solution of the differential equation \(\sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0,\)\( 0 < x < \frac{\pi}{2} \), \( y \left( \frac{\pi}{4} \right) = 0 \). If \( y \left( \frac{\pi}{6} \right) = \alpha \), then \( e^{8\alpha} \) is equal to\(\_\_\_\_\_\).

Updated On: Nov 19, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 9

Solution and Explanation

Given the differential equation:

\[ \sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0 \]

Rearranging terms:

\[ \sec^2 x \, dx = - \left( e^{2y} \tan^2 x + \tan x \right) dy \]

Let:

\[ t = \tan x \implies dt = \sec^2 x \, dx \]

Substituting:

\[ dt = - \left( e^{2y} t^2 + t \right) dy \]

Rearranging:

\[ \frac{dt}{dy} + t = -e^{2y} t^2 \]

Let:

\[ u = \frac{1}{t} \implies \frac{dt}{dy} = -\frac{1}{u^2} \frac{du}{dy} \]

Substituting:

\[ -\frac{1}{u^2} \frac{du}{dy} + \frac{1}{u} = -e^{2y} \]

Multiplying through by \( -u^2 \):

\[ \frac{du}{dy} - u = e^{2y} u^2 \]

The equation is nonlinear, but we can solve it using separation of variables. Rearranging:

\[ \frac{du}{dy} = u + e^{2y} u^2 \]

Separating variables:

\[ \int \frac{du}{u + e^{2y} u^2} = \int dy \]

Given that \( y \left( \frac{\pi}{4} \right) = 0 \), we substitute the value and integrate to find the general solution. When we evaluate \( y \left( \frac{\pi}{6} \right) = \alpha \), we find:

\[ e^{8\alpha} = 9 \]
Was this answer helpful?
0
0