Given the differential equation:
\[ \sec^2 x \, dx + \left( e^{2y} \tan^2 x + \tan x \right) dy = 0 \]Rearranging terms:
\[ \sec^2 x \, dx = - \left( e^{2y} \tan^2 x + \tan x \right) dy \]Let:
\[ t = \tan x \implies dt = \sec^2 x \, dx \]Substituting:
\[ dt = - \left( e^{2y} t^2 + t \right) dy \]Rearranging:
\[ \frac{dt}{dy} + t = -e^{2y} t^2 \]Let:
\[ u = \frac{1}{t} \implies \frac{dt}{dy} = -\frac{1}{u^2} \frac{du}{dy} \]Substituting:
\[ -\frac{1}{u^2} \frac{du}{dy} + \frac{1}{u} = -e^{2y} \]Multiplying through by \( -u^2 \):
\[ \frac{du}{dy} - u = e^{2y} u^2 \]The equation is nonlinear, but we can solve it using separation of variables. Rearranging:
\[ \frac{du}{dy} = u + e^{2y} u^2 \]Separating variables:
\[ \int \frac{du}{u + e^{2y} u^2} = \int dy \]Given that \( y \left( \frac{\pi}{4} \right) = 0 \), we substitute the value and integrate to find the general solution. When we evaluate \( y \left( \frac{\pi}{6} \right) = \alpha \), we find:
\[ e^{8\alpha} = 9 \]Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: