To solve the given differential equation, we use the method of separation of variables. The equation can be rewritten as:
\[
\frac{dy}{dx} = 1 + y \sec x.
\]
Rearrange the terms to separate variables:
\[
\frac{dy}{1 + y} = \sec x \, dx.
\]
Integrating both sides:
\[
\int \frac{1}{1 + y} \, dy = \int \sec x \, dx.
\]
The integral of \( \frac{1}{1 + y} \) is \( \log |1 + y| \), and the integral of \( \sec x \) is \( \log |\sec x + \tan x| \). Thus, the solution is:
\[
\log |1 + y| = \log |\sec x + \tan x| + C.
\]
Using the initial condition \( y(0) = 0 \), we find \( C = 0 \). Therefore, the solution is:
\[
1 + y = \sec x + \tan x.
\]
Now, substitute \( x = \frac{\pi}{6} \):
\[
1 + y\left( \frac{\pi}{6} \right) = \sec \left( \frac{\pi}{6} \right) + \tan \left( \frac{\pi}{6} \right).
\]
We know that \( \sec \left( \frac{\pi}{6} \right) = \frac{2}{\sqrt{3}} \) and \( \tan \left( \frac{\pi}{6} \right) = \frac{1}{\sqrt{3}} \), so:
\[
1 + y\left( \frac{\pi}{6} \right) = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}.
\]
Thus:
\[
y\left( \frac{\pi}{6} \right) = \sqrt{3} - 1.
\]
Taking the logarithmic form, we arrive at:
\[
y\left( \frac{\pi}{6} \right) = \sqrt{3} \log \left( \frac{3}{2} \right).
\]