The differential equation describing the bacterial population is:
\[
\frac{dy}{dt} = \lambda (y + 2).
\]
This is a separable differential equation. To solve, first separate the variables:
\[
\frac{dy}{y + 2} = \lambda \, dt.
\]
Next, integrate both sides:
\[
\int \frac{dy}{y + 2} = \lambda \int dt.
\]
The integral of \( \frac{1}{y + 2} \) is \( \ln |y + 2| \), so:
\[
\ln |y + 2| = \lambda t + C,
\]
where \( C \) is a constant of integration. To solve for \( C \), use the initial condition \( y(0) = 1 \):
\[
\ln |1 + 2| = C \quad \Rightarrow \quad \ln 3 = C.
\]
Thus, the equation becomes:
\[
\ln |y + 2| = \lambda t + \ln 3.
\]
Now, apply the second condition \( y(1) = 4 \):
\[
\ln |4 + 2| = \lambda(1) + \ln 3,
\]
\[
\ln 6 = \lambda + \ln 3.
\]
Solving for \( \lambda \):
\[
\lambda = \ln 6 - \ln 3 = \ln \frac{6}{3} = \ln 2.
\]
Thus, the value of \( \lambda \) is \( \boxed{\ln 2} \).