Step 1: Understand behavior of each function
\[
f_1(x) = x + 2,\quad f_2(x) = 3 - x
\]
We want:
\[
Y = \min(x+2,\ 3-x)
\]
Step 2: Equate to find intersection point
\[
x + 2 = 3 - x \Rightarrow 2x = 1 \Rightarrow x = 0.5
\]
So for $x<0.5$:
$x + 2<3 - x \Rightarrow Y = x + 2$
For $x>0.5$:
$3 - x<x + 2 \Rightarrow Y = 3 - x$
Step 3: Find max Y in interval [0, 1]
Max Y occurs at $x = 0.5$
Then: $Y = x + 2 = 0.5 + 2 = 2.5$ and $3 - x = 2.5$
So minimum is 2.5
\[
\boxed{1.5} \quad \text{(Wait! That contradicts)}
\]
Actually, at $x=0.5$:
\[
Y = \min(2.5, 2.5) = 2.5
\Rightarrow \boxed{2.5}
\]
Correct option is:
\[
\boxed{2.5}
\]