By symmetry and continuity, $P(X\le \mu)=P(X\ge \mu)=\tfrac12$ and ties have probability $0$. Thus \[ P(Y_1<\mu<Y_n)=1-P(\text{all }\le \mu)-P(\text{all }\ge \mu) =1-2\left(\tfrac12\right)^n=1-2^{1-n}. \] Require $1-2^{1-n}\ge 0.99 \;\Rightarrow\; 2^{1-n}\le 0.01 \;\Rightarrow\; 2^{n-1}\ge 100$. Hence $n-1\ge \log_2 100 \approx 6.6438$ so the smallest integer is $\boxed{8}$.