By the law of total expectation,
\[
E(Y^{2})=E\!\left[E\!\left(Y^{2}\mid X\right)\right].
\]
If $U\sim\text{Unif}(0,a)$, then $E(U^{2})=a^{2}/3$. Hence
\[
E\!\left(Y^{2}\mid X=x\right)=\frac{1}{3}\left(\frac{x^{2}}{4}\right)^{2}=\frac{x^{4}}{48}.
\]
Therefore,
\[
E(Y^{2})=\frac{1}{48}E(X^{4}),\qquad
X\sim\text{Unif}(0,4)\Rightarrow E(X^{4})=\frac{1}{4}\int_{0}^{4}x^{4}\,dx
=\frac{1}{4}\cdot\frac{4^{5}}{5}=51.2.
\]
Thus
\[
E(Y^{2})=\frac{51.2}{48}=1.\overline{06}7 \approx \boxed{1.067}.
\]