Let \( X \sim \text{Exp}(\lambda_1) \) and \( Y \sim \text{Exp}(\lambda_2) \) be independent exponential random variables. The mean and variance of an exponential random variable are related to the rate parameter as follows:
\[
E(X) = \frac{1}{\lambda_1}, \quad E(X^2) = \frac{2}{\lambda_1^2},
\]
\[
E(Y) = \frac{1}{\lambda_2}, \quad E(Y^2) = \frac{2}{\lambda_2^2}.
\]
We are given \( E(X^2) = \frac{1}{2} \) and \( E(Y^2) = \frac{2}{9} \), which gives:
\[
\frac{2}{\lambda_1^2} = \frac{1}{2} \quad \Rightarrow \quad \lambda_1 = 2,
\]
\[
\frac{2}{\lambda_2^2} = \frac{2}{9} \quad \Rightarrow \quad \lambda_2 = 3.
\]
Now, we need to compute \( P(X<2Y) \). Since \( X \) and \( Y \) are independent, the probability can be computed as:
\[
P(X<2Y) = \int_0^\infty P(X<2y) f_Y(y) \, dy.
\]
For \( X \sim \text{Exp}(2) \) and \( Y \sim \text{Exp}(3) \), the cumulative distribution function (CDF) of \( X \) is \( F_X(x) = 1 - e^{-2x} \), and the PDF of \( Y \) is \( f_Y(y) = 3e^{-3y} \).
Thus, the integral becomes:
\[
P(X<2Y) = \int_0^\infty (1 - e^{-4y}) 3e^{-3y} \, dy.
\]
After solving the integral, we find that \( P(X<2Y) \approx 0.55 \).
Thus, \( P(X<2Y) \) is approximately \( \boxed{0.59} \).