To solve for \( P(|X+Y|=2) \) using the joint moment generating function (MGF) of \((X, Y)\), we start by identifying the distributions of \(X\) and \(Y\) from the given MGF. The MGF is:
\(M(t_1,t_2)=(\frac{1}{2}e^{-t_1}+\frac{1}{2}e^{t_1})^2(\frac{1}{2}+\frac{1}{2}e^{t_2})^2.\)
1. The form \(\frac{1}{2}e^{-t_1}+\frac{1}{2}e^{t_1}\) suggests a Bernoulli variable where \(X\) can be \(-1\) or \(1\) with probability \(\frac{1}{2}\).
2. Similarly, \((\frac{1}{2}+\frac{1}{2}e^{t_2})\) suggests a Bernoulli variable where \(Y\) can be \(0\) or \(1\) with probability \(\frac{1}{2}\).
Therefore, possible values for \((X,Y)\) are \((-1,0), (1,0), (-1,1), (1,1)\).
Next, compute \(X+Y\) for each case:
| (X, Y) | X+Y |
|---|---|
| (-1, 0) | -1 |
| (1, 0) | 1 |
| (-1, 1) | 0 |
| (1, 1) | 2 |
We seek \(P(|X+Y|=2)\). This occurs when \(X+Y = -2\) or \(X+Y = 2\).
From our values of \(X+Y\): only \( (1, 1) \) yields \(X+Y=2\).
Thus, \(P(X+Y=2) = P((1, 1)) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = 0.25.\)
Hence, \(P(|X+Y|=2) = 0.25\).
Final Answer: \(P(|X+Y|=2) = 0.25\)