>
Exams
>
Mathematics
>
Calculus
>
let x frac dy dx sin 2y x 3 2 x 3 cos 2 y y 2 0 th
Question:
Let \(x \frac{dy}{dx} - \sin 2y = x^3(2 - x^3) \cos^2 y ; y(2) = 0\), then find \(\tan(y(1))\) :
Show Hint
For Bernoulli-type equations or non-linear equations, always look for a substitution like \( v = f(y) \) that makes the equation linear in \( v \).
JEE Main - 2026
JEE Main
Updated On:
Jan 28, 2026
5/4
3/4
7/4
9/4
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Understanding the Concept:
This is a non-linear differential equation. Dividing by \( \cos^2 y \) transforms it into a linear equation.
Step 2: Key Formula or Approach:
Divide by \( x \cos^2 y \):
\( \frac{1}{\cos^2 y} \frac{dy}{dx} - \frac{2 \sin y \cos y}{x \cos^2 y} = x^2(2 - x^3) \)
\( \sec^2 y \frac{dy}{dx} - \frac{2 \tan y}{x} = 2x^2 - x^5 \).
Let \( v = \tan y \), then \( \frac{dv}{dx} = \sec^2 y \frac{dy}{dx} \).
Step 3: Detailed Explanation:
Equation becomes: \( \frac{dv}{dx} - \frac{2}{x}v = 2x^2 - x^5 \).
Integrating factor \( IF = e^{\int -2/x dx} = x^{-2} \).
Solution: \( v \cdot x^{-2} = \int (2x^2 - x^5)x^{-2} dx = \int (2 - x^3) dx \)
\( \frac{\tan y}{x^2} = 2x - \frac{x^4}{4} + C \).
Using \( y(2) = 0 \): \( \frac{0}{4} = 4 - 4 + C \implies C = 0 \).
So, \( \tan y = x^2(2x - \frac{x^4}{4}) = 2x^3 - \frac{x^6}{4} \).
At \( x=1 \), \( \tan(y(1)) = 2 - 1/4 = 7/4 \).
Step 4: Final Answer:
\(\tan(y(1)) = 7/4\).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Calculus
The value of \(\lim_{x \to 0} \frac{\ln(\sec(ex) \cdot \sec(e^2x) \dots \sec(e^{10}x))}{e^2 - e^{2\cos x}}\) is :
JEE Main - 2026
Mathematics
Calculus
View Solution
The value of \(S = \sum_{r=1}^{20} \sqrt{\pi \int_{0}^{r} x |\sin \pi x| dx}\) is :
JEE Main - 2026
Mathematics
Calculus
View Solution
Let \(\int \frac{1 - 5 \cos^2 x}{\sin^5 x \cos^2 x} dx = f(x) + c\) then find \(f\left(\frac{\pi}{4}\right) - f\left(\frac{\pi}{6}\right)\) :
JEE Main - 2026
Mathematics
Calculus
View Solution
If \(f(x^2 + 1) = x^4 + 5x^2 + 1\), then find \(\int_{0}^{3} f(x) dx\) :
JEE Main - 2026
Mathematics
Calculus
View Solution
Value of : \(\sum_{k=1}^{\infty} \frac{(-1)^k \cdot k(k+1)}{k!}\)
JEE Main - 2026
Mathematics
Calculus
View Solution
View More Questions
Questions Asked in JEE Main exam
If \( a, b, c \) are in A.P. where \( a + b + c = 1 \) and \( a, 2b, c \) are in G.P., then the value of \( 9(a^2 + b^2 + c^2) \) is equal to:
JEE Main - 2026
Number Systems
View Solution
If \[ \lim_{x \to 0} \frac{e^{a(x-1)} + 2\cos(bx) + e^{-x}(c - 1)}{x \cos x - \ln(1 + x)} = 2, \] Then the value of \( a^2 + b^2 + c^2 \) is:
JEE Main - 2026
Geometry
View Solution
Let \( \mathbf{a} = \sqrt{2} \hat{i} \) and \( \mathbf{b} = 5\hat{j} + \hat{k} \). If \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \) and \( \mathbf{c} \) lies in the \( y \)-\( z \) plane such that \( |\mathbf{c}| = 2 \), then the maximum value of \( |\mathbf{c} \cdot \mathbf{d}| \) is equal to:
JEE Main - 2026
Number Systems
View Solution
If \( \alpha, \beta \) are roots of the equation \( 12x^2 - 20x + 3 = 0 \), \( \lambda \in \mathbb{R} \). If \( \frac{1}{2} \leq |\beta - \alpha| \leq \frac{3}{2} \), then the sum of all possible values of \( \lambda \) is:
JEE Main - 2026
Permutation and Combination
View Solution
If \( P(10, 2\sqrt{15}) \) lies on the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) and the length of the latus rectum is 8, then the square of the area of \( \Delta PS_1S_2 \) is [where \( S_1 \) and \( S_2 \) are the foci of the hyperbola].
JEE Main - 2026
Geometry
View Solution
View More Questions