Question:

Let X be a random variable having the probability density function
\(f(x)=\begin{cases} ax^2+b, & 0 \le x \le 3\\ 0, & \text{otherwise,} \end{cases}\)
where a and b are real constants, and \(P(X \ge 2)=\frac{2}{3}.\)
Then E(X) equals __________ (round off to 2 decimal places)

Updated On: Nov 25, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2.1

Solution and Explanation

The correct answer is 2.10 to 2.55.(approx)To solve for \(E(X)\), we first need to determine the constants \(a\) and \(b\) by using the given probability density function \(f(x)\) and the condition \(P(X \ge 2) = \frac{2}{3}\).

1. **Normalization Condition:**
Since \(f(x)\) is a probability density function (PDF), it must satisfy:
\(\int_{0}^{3} (ax^2 + b) \, dx = 1\)
Calculating this integral, we get:
\(\int_{0}^{3} ax^2 \, dx + \int_{0}^{3} b \, dx = \frac{a}{3}(27) + 3b = 9a + 3b = 1\)
\(3b + 9a = 1\) ...(i)

2. **Condition \(P(X \ge 2) = \frac{2}{3}\):**
This implies:
\(\int_{2}^{3} (ax^2 + b) \, dx = \frac{2}{3}\)
Solving, we find:
\(\left[\frac{a}{3}x^3 + bx\right]_{2}^{3} = \frac{a}{3}(27 - 8) + b(3 - 2)\)
\(\frac{19a}{3} + b = \frac{2}{3}\) ...(ii)

By solving equations (i) and (ii) simultaneously:
\(3b = 1 - 9a\) from (i), substitute in (ii):
\(\frac{19a}{3} + \frac{1 - 9a}{3} = \frac{2}{3}\)
\(\frac{19a + 1 - 9a}{3} = \frac{2}{3}\)
\(10a + 1 = 2 \Rightarrow a = \frac{1}{10}\)
Substitute \(a\) back in (i):
\(3b + 9 \times \frac{1}{10} = 1 \Rightarrow b = \frac{7}{30}\)

3. **Calculate \(E(X)\):**
\(E(X) = \int_{0}^{3} x(ax^2 + b) \, dx\)
\(= \int_{0}^{3} (ax^3 + bx) \, dx\)
\(= \left[\frac{a}{4}x^4 + \frac{b}{2}x^2\right]_{0}^{3}\)
\(= \frac{1}{40}[(81) + 21] = \frac{102}{40} = 2.55\)

The expected value \(E(X)\) is \(2.55\)

Was this answer helpful?
0
1

Top Questions on Univariate Distributions

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions