We are given the equation:
$4\log_{10} x + 4\log_{100} x + 8\log_{1000} x = 13$.
We can simplify the logarithms:
$\log_{100} x = \frac{\log_{10} x}{\log_{10} 100} = \frac{\log_{10} x}{2}$,
$\log_{1000} x = \frac{\log_{10} x}{\log_{10} 1000} = \frac{\log_{10} x}{3}$.
Substitute these into the equation:
$4\log_{10} x + 4\left(\frac{\log_{10} x}{2}\right) + 8\left(\frac{\log_{10} x}{3}\right) = 13$,
$4\log_{10} x + 2\log_{10} x + \frac{8}{3}\log_{10} x = 13$.
Factor out $\log_{10} x$:
$\left(4 + 2 + \frac{8}{3}\right)\log_{10} x = 13$,
$\left(\frac{18}{3} + \frac{8}{3}\right)\log_{10} x = 13$,
$\frac{26}{3}\log_{10} x = 13$.
Solve for $\log_{10} x$:
$\log_{10} x = \frac{13 \times 3}{26} = \frac{39}{26} = 1.5$.
Thus, $x = 10^{1.5} = 10 \times \sqrt{10} \approx 31.62$.
The greatest integer not exceeding $x$ is 31.
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :