The probability mass function for a Poisson distribution is given by:
\[
P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}
\]
We are given the equation:
\[
P(X = 1) = 3P(X = 3) - P(X = 2)
\]
Substitute the Poisson distribution formula for \(P(X = 1)\), \(P(X = 2)\), and \(P(X = 3)\):
\[
\frac{\lambda^1 e^{-\lambda}}{1!} = 3 \cdot \frac{\lambda^3 e^{-\lambda}}{3!} - \frac{\lambda^2 e^{-\lambda}}{2!}
\]
Simplifying:
\[
\lambda e^{-\lambda} = 3 \cdot \frac{\lambda^3 e^{-\lambda}}{6} - \frac{\lambda^2 e^{-\lambda}}{2}
\]
\[
\lambda e^{-\lambda} = \frac{\lambda^3 e^{-\lambda}}{2} - \frac{\lambda^2 e^{-\lambda}}{2}
\]
Factor out \( e^{-\lambda} \) (since it's non-zero) from both sides:
\[
\lambda = \frac{\lambda^3}{2} - \frac{\lambda^2}{2}
\]
Multiply through by 2 to eliminate the denominators:
\[
2\lambda = \lambda^3 - \lambda^2
\]
Rearranging the terms:
\[
\lambda^3 - \lambda^2 - 2\lambda = 0
\]
Factor out \( \lambda \):
\[
\lambda(\lambda^2 - \lambda - 2) = 0
\]
Thus, we have two possible solutions for \( \lambda \):
\[
\lambda = 0 \quad {or} \quad \lambda^2 - \lambda - 2 = 0
\]
Since \( \lambda>0 \), we solve the quadratic equation:
\[
\lambda^2 - \lambda - 2 = 0
\]
Using the quadratic formula:
\[
\lambda = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)} = \frac{1 \pm \sqrt{1 + 8}}{2} = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2}
\]
Thus, \( \lambda = 2 \) (since \( \lambda>0 \)).
Correct Answer:} \( \lambda = 2 \)