Step 1: Expand the MGF
$$M_X(t) = \frac{1}{1024}(1 + 3e^t)^2(3 + e^t)^3$$
Recognize that $1024 = 4^5 = 2^{10}$.
Rewrite: $$M_X(t) = \frac{1}{4^2 \cdot 3^3}(1 + 3e^t)^2(3 + e^t)^3$$
$$= \left(\frac{1 + 3e^t}{4}\right)^2 \left(\frac{3 + e^t}{4}\right)^3$$
$$= \left(\frac{1}{4} + \frac{3e^t}{4}\right)^2 \left(\frac{3}{4} + \frac{e^t}{4}\right)^3$$
This is the MGF of the sum of 5 independent Bernoulli random variables:
So $X = Y_1 + Y_2 + Z_1 + Z_2 + Z_3$ where all are independent.
Step 2: Calculate $E[X]$
$$E[X] = 2 \cdot \frac{3}{4} + 3 \cdot \frac{1}{4} = \frac{6}{4} + \frac{3}{4} = \frac{9}{4}$$
Option (A) is TRUE
Step 3: Calculate $Var(X)$
$$Var(X) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} \cdot \frac{3}{4}$$
$$= 2 \cdot \frac{3}{16} + 3 \cdot \frac{3}{16} = \frac{6}{16} + \frac{9}{16} = \frac{15}{16}$$
Option (B) is FALSE (it claims $Var(X) = 15/32$)
Step 4: Calculate $P(X \geq 1)$
$$P(X \geq 1) = 1 - P(X = 0) = 1 - P(\text{all 5 variables are 0})$$
$$= 1 - \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}$$
$$= 1 - \frac{27}{1024} = \frac{997}{1024}$$
Option (C) is FALSE (it claims $P(X \geq 1) = 27/1024$)
Step 5: Calculate $P(X = 5)$
$$P(X = 5) = P(\text{all 5 variables are 1})$$
$$= \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{9 \cdot 1}{1024} = \frac{9}{1024}$$
Option (D) is FALSE (it claims $P(X = 5) = 3/1024$)
Answer: (A) $E(X) = \frac{9}{4}$