Let \( X \) and \( Y \) be two discrete random variables with the joint moment generating function \[ M_{X,Y}(t_1, t_2) = \left( \frac{1}{3} e^{t_1} + \frac{2}{3} \right)^2 \left( \frac{2}{3} e^{t_2} + \frac{1}{3} \right)^3, t_1, t_2 \in \mathbb{R}. \] Then \( P(2X + 3Y > 1) \) equals .........
Step 1: Identify the distribution from the MGF
The joint MGF is: $$M_{X,Y}(t_1, t_2) = \left(\frac{1}{3}e^{t_1} + \frac{2}{3}\right)^2 \left(\frac{2}{3}e^{t_2} + \frac{1}{3}\right)^3$$
This can be rewritten as: $$M_{X,Y}(t_1, t_2) = \left[\frac{1}{3}e^{t_1} + \frac{2}{3}e^{0}\right]^2 \left[\frac{2}{3}e^{t_2} + \frac{1}{3}e^{0}\right]^3$$
This is the MGF of independent random variables where:
Therefore:
Step 2: Find the distributions
For $X \sim \text{Binomial}(2, \frac{1}{3})$:
For $Y \sim \text{Binomial}(3, \frac{2}{3})$:
Step 3: Find $P(2X + 3Y > 1)$
We need $2X + 3Y > 1$, which is equivalent to $2X + 3Y \geq 2$.
The complement is $2X + 3Y \leq 1$:
Actually, $2X + 3Y = 1$ requires $2X + 3Y = 1$. Since $X, Y$ are non-negative integers:
So $2X + 3Y = 1$ has no solutions.
Therefore: $P(2X + 3Y \leq 1) = P(2X + 3Y = 0) = P(X = 0, Y = 0)$
Since $X$ and $Y$ are independent: $$P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0) = \frac{4}{9} \cdot \frac{1}{27} = \frac{4}{243}$$
Therefore: $$P(2X + 3Y > 1) = 1 - \frac{4}{243} = \frac{239}{243}$$
Step 4: Convert to decimal
$$\frac{239}{243} \approx 0.9835$$
Answer: $$P(2X + 3Y > 1) = \frac{239}{243} \approx 0.984$$