Step 1: Understanding the Concept:
We need to find the probability of the minimum of two i.i.d. discrete random variables being equal to a specific value. The key is to express the event \(Z=k\) in terms of events involving X and Y. A useful technique for the minimum is to work with the survival function, \(P(Z>z)\).
Step 2: Key Formula or Approach:
For \(Z = \min(X, Y)\) with X and Y being independent:
\[ P(Z>z) = P(X>z \text{ and } Y>z) = P(X>z) P(Y>z) \]
For discrete variables, the probability mass function can be found using the survival function:
\[ P(Z = k) = P(Z>k-1) - P(Z>k) \]
Or, equivalently, using the CDF:
\[ P(Z = k) = P(Z \le k) - P(Z \le k-1) \]
Step 3: Detailed Explanation:
We want to find \(P(Z=1)\). Let's use the survival function approach.
\[ P(Z = 1) = P(Z>0) - P(Z>1) \]
Since X, Y are i.i.d., \(P(Z>z) = [P(X>z)]^2\).
First, we need the probabilities for a single Poisson(1) variable, X. The PMF is \(P(X=k) = \frac{e^{-1}1^k}{k!} = \frac{e^{-1}}{k!}\).
- \(P(X=0) = e^{-1}\)
- \(P(X=1) = e^{-1}\)
Now, calculate the required survival probabilities for X:
- \(P(X>0) = 1 - P(X=0) = 1 - e^{-1}\)
- \(P(X>1) = 1 - P(X \le 1) = 1 - (P(X=0) + P(X=1)) = 1 - (e^{-1} + e^{-1}) = 1 - 2e^{-1}\)
Now, calculate the survival probabilities for Z:
- \(P(Z>0) = [P(X>0)]^2 = (1 - e^{-1})^2 = 1 - 2e^{-1} + e^{-2}\)
- \(P(Z>1) = [P(X>1)]^2 = (1 - 2e^{-1})^2 = 1 - 4e^{-1} + 4e^{-2}\)
Finally, calculate \(P(Z=1)\):
\[ P(Z=1) = (1 - 2e^{-1} + e^{-2}) - (1 - 4e^{-1} + 4e^{-2}) \]
\[ P(Z=1) = 1 - 2e^{-1} + e^{-2} - 1 + 4e^{-1} - 4e^{-2} \]
\[ P(Z=1) = 2e^{-1} - 3e^{-2} \]
To match the options, we can write this with a common denominator of \(e^2\):
\[ P(Z=1) = \frac{2}{e} - \frac{3}{e^2} = \frac{2e}{e^2} - \frac{3}{e^2} = \frac{2e-3}{e^2} \]
Step 4: Final Answer:
The probability P(Z=1) is \( \frac{2e-3}{e^2} \).