Step 1: Understanding the Concept:
The question asks for the conditional expectation of Y given X=x, denoted \(E(Y|X=x)\). To find this, we first need to determine the conditional probability density function (PDF) of Y given X=x, denoted \(f(y|x)\). Then, we can find the expectation of this conditional distribution.
Step 2: Key Formula or Approach:
1. Find the marginal PDF of X: \(f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy\).
2. Find the conditional PDF of Y given X: \(f(y|x) = \frac{f(x,y)}{f_X(x)}\).
3. Calculate the conditional expectation: \(E(Y|X=x) = \int_{-\infty}^{\infty} y . f(y|x) dy\).
Step 3: Detailed Explanation:
1. Find the marginal PDF of X, \(f_X(x)\):
\[ f_X(x) = \int_{0}^{\infty} xe^{-x(y+1)} dy = \int_{0}^{\infty} xe^{-xy-x} dy \]
We can factor out the terms not involving y:
\[ f_X(x) = xe^{-x} \int_{0}^{\infty} e^{-xy} dy \]
The integral evaluates to:
\[ \int_{0}^{\infty} e^{-xy} dy = \left[ -\frac{1}{x} e^{-xy} \right]_{y=0}^{y=\infty} = (0) - (-\frac{1}{x}e^0) = \frac{1}{x} \]
So, the marginal PDF is:
\[ f_X(x) = xe^{-x} \left(\frac{1}{x}\right) = e^{-x}, \quad \text{for } x \ge 0 \]
(This means X follows an exponential distribution with rate 1).
2. Find the conditional PDF of Y given X, \(f(y|x)\):
\[ f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{xe^{-x(y+1)}}{e^{-x}} = \frac{xe^{-xy}e^{-x}}{e^{-x}} = xe^{-xy}, \quad \text{for } y \ge 0 \]
This is the PDF of an exponential distribution with rate parameter \(\lambda = x\).
3. Calculate the conditional expectation, \(E(Y|X=x)\):
The expected value of an exponential distribution with rate parameter \(\lambda\) is \(1/\lambda\).
Since the conditional distribution of Y given X=x is exponential with rate \(x\), its expected value is:
\[ E(Y|X=x) = \frac{1}{x} \]
Step 4: Final Answer:
The conditional expectation \(E(Y|X = x)\) is \( \frac{1}{x} \).