Let vectors:
$ \vec{A} = \hat{i} - 2\hat{j} + \hat{k},\ \vec{B} = \hat{i} + \hat{j} - 2\hat{k},\ \vec{C} = 2\hat{i} - \hat{j},\ \vec{D} = \hat{i} + \hat{j} + \hat{k} $
If $ P $ divides $ AB $ in ratio 2:1 internally, and $ Q $ divides $ CD $ in ratio 1:2 externally, find the ratio in which the point
$ 5\hat{i} - 6\hat{j} - 5\hat{k} $ divides line $ PQ $