Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?
\( \frac{\pi}{4} \)
\( \frac{\pi}{3} \)
\( \frac{\pi}{2} \)
\( \frac{2\pi}{3} \)
Given that \( \vec{p} \) and \( \vec{q} \) are unit vectors and the angle between them is \( \alpha \), we are told that \( \vec{p} + \vec{q} \) is also a unit vector.
We use the identity: \[ |\vec{p} + \vec{q}| = \sqrt{|\vec{p}|^2 + |\vec{q}|^2 + 2|\vec{p}||\vec{q}|\cos\alpha} \] Since \( \vec{p} \) and \( \vec{q} \) are unit vectors: \[ |\vec{p}| = |\vec{q}| = 1 \] So the expression becomes: \[ |\vec{p} + \vec{q}| = \sqrt{1^2 + 1^2 + 2 \cdot 1 \cdot 1 \cdot \cos\alpha} = \sqrt{2 + 2\cos\alpha} \] Since \( \vec{p} + \vec{q} \) is a unit vector, we set: \[ \sqrt{2 + 2\cos\alpha} = 1 \] Squaring both sides: \[ 2 + 2\cos\alpha = 1 \Rightarrow \cos\alpha = \frac{-1}{2} \Rightarrow \alpha = \frac{2\pi}{3} \]
Option (D) \( \frac{2\pi}{3} \)
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).