Step 1: Understanding the Concept:
A vector that is perpendicular to two non-parallel vectors must be parallel to their cross product.
We find the vectors \( \vec{p} + \vec{q} \) and \( \vec{p} - \vec{q} \), calculate their cross product, and then scale it to satisfy the magnitude condition.
Step 2: Key Formula or Approach:
1. \( \vec{u} \perp \vec{v}, \vec{w} \implies \vec{u} \parallel (\vec{v} \times \vec{w}) \).
2. Cross product:
\[
\vec{A} \times \vec{B} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{vmatrix}.
\]
Step 3: Detailed Explanation:
Calculate the target vectors:
\(\vec{p} + \vec{q} = (2+1)\hat{i} + (3+2)\hat{j} + (1+1)\hat{k} = 3\hat{i} + 5\hat{j} + 2\hat{k}\).
\(\vec{p} - \vec{q} = (2-1)\hat{i} + (3-2)\hat{j} + (1-1)\hat{k} = \hat{i} + \hat{j} + 0\hat{k}\).
Find their cross product:
\[
\vec{V} = (\vec{p} + \vec{q}) \times (\vec{p} - \vec{q}) = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & 5 & 2 \\
1 & 1 & 0
\end{vmatrix}
\]
\[
\vec{V} = \hat{i}(0-2) - \hat{j}(0-2) + \hat{k}(3-5) = -2\hat{i} + 2\hat{j} - 2\hat{k}
\]
The vector \( \vec{r} \) is parallel to \( \vec{V} \), so
\[
\vec{r} = \lambda(-2\hat{i} + 2\hat{j} - 2\hat{k})
\]
Magnitude \( |\vec{r}| = \sqrt{4\lambda^2 + 4\lambda^2 + 4\lambda^2} = \sqrt{12\lambda^2} = 2|\lambda|\sqrt{3} \).
Given \( |\vec{r}| = \sqrt{3} \implies 2|\lambda|\sqrt{3} = \sqrt{3} \implies |\lambda| = \frac{1}{2} \).
Thus,
\[
\vec{r} = \pm \frac{1}{2}(-2\hat{i} + 2\hat{j} - 2\hat{k}) = \pm(-\hat{i} + \hat{j} - \hat{k})
\]
The components are \( \alpha = \mp 1, \beta = \pm 1, \gamma = \mp 1 \).
The required sum is
\[
|\alpha| + |\beta| + |\gamma| = 1 + 1 + 1 = 3.
\]
Step 4: Final Answer:
The value of \( |\alpha| + |\beta| + |\gamma| \) is 3.