Let a vector \[ \vec a=\sqrt{2}\,\hat i-\hat j+\lambda \hat k,\ \lambda>0, \] make an obtuse angle with the vector \[ \vec b=-\lambda^2\hat i+4\sqrt{2}\hat j+4\sqrt{2}\hat k \] and an angle \( \theta \), \(\frac{\pi}{6}<\theta<\frac{\pi}{2}\), with the positive \(z\)-axis. If the set of all possible values of \( \lambda \) is \((\alpha,\beta)-\{\gamma\}\), then\(\alpha+\beta+\gamma\) is equal to ____________.
Let each of the two ellipses $E_1:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;(a>b)$ and $E_2:\dfrac{x^2}{A^2}+\dfrac{y^2}{B^2}=1A$
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals