Let a vector \[ \vec a=\sqrt{2}\,\hat i-\hat j+\lambda \hat k,\ \lambda>0, \] make an obtuse angle with the vector \[ \vec b=-\lambda^2\hat i+4\sqrt{2}\hat j+4\sqrt{2}\hat k \] and an angle \( \theta \), \(\frac{\pi}{6}<\theta<\frac{\pi}{2}\), with the positive \(z\)-axis. If the set of all possible values of \( \lambda \) is \((\alpha,\beta)-\{\gamma\}\), then\(\alpha+\beta+\gamma\) is equal to ____________.
Step 1: Condition for obtuse angle.
For obtuse angle between \( \vec a \) and \( \vec b \):
\[ \vec a\cdot\vec b<0 \] \[ (\sqrt2)(-\lambda^2)+(-1)(4\sqrt2)+\lambda(4\sqrt2)<0 \] \[ -\sqrt2\lambda^2-4\sqrt2+4\sqrt2\lambda<0 \] Dividing by \( \sqrt2 \):
\[ -\lambda^2+4\lambda-4<0 \] \[ (\lambda-2)^2>0 \] Thus,
\[ \lambda\neq 2 \]
Step 2: Angle with positive \(z\)-axis.
\[ \cos\theta=\frac{\lambda}{\sqrt{2+1+\lambda^2}}=\frac{\lambda}{\sqrt{\lambda^2+3}} \] Given \( \frac{\pi}{6}<\theta<\frac{\pi}{2} \Rightarrow 0<\cos\theta<\frac{\sqrt3}{2} \).
\[ 0<\frac{\lambda}{\sqrt{\lambda^2+3}}<\frac{\sqrt3}{2} \] Squaring:
\[ \frac{\lambda^2}{\lambda^2+3}<\frac{3}{4} \] \[ 4\lambda^2<3\lambda^2+9 \Rightarrow \lambda^2<9 \Rightarrow 0<\lambda<3 \]
Step 3: Combine conditions.
\[ \lambda\in(0,3)-\{2\} \] Thus,
\[ \alpha=0,\ \beta=3,\ \gamma=2 \] \[ \alpha+\beta+\gamma=5 \]
Final Answer:
\[ \boxed{5} \]
Let $\vec a = 2\hat i + \hat j - 2\hat k$, $\vec b = \hat i + \hat j$ and $\vec c = \vec a \times \vec b$. Let $\vec d$ be a vector such that $|\vec d - \vec a| = \sqrt{11}$, $|\vec c \times \vec d| = 3$ and the angle between $\vec c$ and $\vec d$ is $\frac{\pi}{4}$. Then $\vec a \cdot \vec d$ is equal to
Consider the following reaction sequence.

One mole each of \(A_2(g)\) and \(B_2(g)\) are taken in a 1 L closed flask and allowed to establish the equilibrium at 500 K: \(A_{2}(g)+B_{2}(g) \rightleftharpoons 2AB(g)\). The value of x (missing enthalpy of \(B_2\) or related parameter) is ______ . (Nearest integer)}