Step 1: Understanding the Concept:
The expression \(\vec{a} \cdot (\vec{b} \times \vec{c})\) is the scalar triple product, which is equal to \((\vec{a} \times \vec{b}) \cdot \vec{c}\). We can use the vector triple product identity on \(\vec{a} \times (\vec{a} \times \vec{c})\) to find information about \(\vec{c}\).
Step 2: Key Formula or Approach:
1. \(\vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{a} - (\vec{a} \cdot \vec{a})\vec{c}\).
2. \(\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}\).
Step 3: Detailed Explanation:
Given \(\vec{a} \times \vec{c} = \vec{b}\). Cross both sides with \(\vec{a}\):
\[ \vec{a} \times (\vec{a} \times \vec{c}) = \vec{a} \times \vec{b} \]
Using the identity:
\[ (\vec{a} \cdot \vec{c})\vec{a} - |\vec{a}|^2 \vec{c} = \vec{a} \times \vec{b} \]
Substitute \(\vec{a} \cdot \vec{c} = 3\) and \(|\vec{a}|^2 = 1^2 + 1^2 + 1^2 = 3\):
\[ 3\vec{a} - 3\vec{c} = \vec{a} \times \vec{b} \implies 3\vec{c} = 3\vec{a} - (\vec{a} \times \vec{b}) \]
Now calculate \(\vec{a} \times \vec{b}\):
\[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
0 & 1 & -1 \end{vmatrix} = (-2)\hat{i} - (-1)\hat{j} + (1)\hat{k} = -2\hat{i} + \hat{j} + \hat{k} \]
We need \(\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}\).
From \(3\vec{c} = 3\vec{a} - (\vec{a} \times \vec{b})\), dot with \((\vec{a} \times \vec{b})\):
\[ 3(\vec{a} \times \vec{b} \cdot \vec{c}) = 3\vec{a} \cdot (\vec{a} \times \vec{b}) - |\vec{a} \times \vec{b}|^2 \]
Since \(\vec{a} \perp (\vec{a} \times \vec{b})\), the first term is zero.
\[ 3(\vec{a} \times \vec{b} \cdot \vec{c}) = - ((-2)^2 + 1^2 + 1^2) = -6 \implies (\vec{a} \times \vec{b} \cdot \vec{c}) = -2 \]
Step 4: Final Answer:
The scalar triple product value is \(-2\).