Question:

Let $\vec{a} = \hat{i}+\hat{j}+2\hat{k}$ and $\vec{b} = -\hat{i}+2\hat{j}+3\hat{k}$. Then the vector product $(\vec{a}+\vec{b}) \times ((\vec{a} \times ((\vec{a}-\vec{b}) \times \vec{b})) \times \vec{b})$ is equal to :

Show Hint

For complex vector expressions, work systematically from the innermost parentheses outward. Be meticulous with the determinant calculations for cross products to avoid sign errors, which are common mistakes.
Updated On: Jan 6, 2026
  • $5(30\hat{i} - 5\hat{j} + 7\hat{k})$
  • $7(30\hat{i} - 5\hat{j} + 7\hat{k})$
  • $5(34\hat{i} - 5\hat{j} + 3\hat{k})$
  • $7(34\hat{i} - 5\hat{j} + 3\hat{k})$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let's evaluate the expression step by step, from the inside out. 
First, calculate $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$. 
$\vec{a} = \hat{i}+\hat{j}+2\hat{k}$ 
$\vec{b} = -\hat{i}+2\hat{j}+3\hat{k}$ 
$\vec{a}+\vec{b} = (1-1)\hat{i} + (1+2)\hat{j} + (2+3)\hat{k} = 3\hat{j} + 5\hat{k}$. 
$\vec{a}-\vec{b} = (1-(-1))\hat{i} + (1-2)\hat{j} + (2-3)\hat{k} = 2\hat{i} - \hat{j} - \hat{k}$. 
Next, calculate the innermost cross product, let $\vec{v}_1 = (\vec{a}-\vec{b}) \times \vec{b}$. 
$\vec{v}_1 = (2\hat{i} - \hat{j} - \hat{k}) \times (-\hat{i}+2\hat{j}+3\hat{k})$ 

Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions