Let's evaluate the expression step by step, from the inside out.
First, calculate $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.
$\vec{a} = \hat{i}+\hat{j}+2\hat{k}$
$\vec{b} = -\hat{i}+2\hat{j}+3\hat{k}$
$\vec{a}+\vec{b} = (1-1)\hat{i} + (1+2)\hat{j} + (2+3)\hat{k} = 3\hat{j} + 5\hat{k}$.
$\vec{a}-\vec{b} = (1-(-1))\hat{i} + (1-2)\hat{j} + (2-3)\hat{k} = 2\hat{i} - \hat{j} - \hat{k}$.
Next, calculate the innermost cross product, let $\vec{v}_1 = (\vec{a}-\vec{b}) \times \vec{b}$.
$\vec{v}_1 = (2\hat{i} - \hat{j} - \hat{k}) \times (-\hat{i}+2\hat{j}+3\hat{k})$ 



