Question:

Let $\vec{a}=\hat{i}-\alpha\hat{j}+\beta\hat{k}$, $\vec{b}=3\hat{i}+\beta\hat{j}-\alpha\hat{k}$ and $\vec{c}=-\alpha\hat{i}-2\hat{j}+\hat{k}$, where $\alpha$ and $\beta$ are integers. If $\vec{a} \cdot \vec{b} = -1$ and $\vec{b} \cdot \vec{c} = 10$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to ________.

Show Hint

The scalar triple product $(\vec{a} \times \vec{b}) \cdot \vec{c}$ represents the volume of the parallelepiped formed by the three vectors and can be efficiently calculated as the determinant of the matrix whose rows (or columns) are the components of the vectors.
Updated On: Jan 12, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 9

Solution and Explanation

We are given three vectors and two conditions. Let us use the conditions to find \( \alpha \) and \( \beta \).
\[ \vec{a} = (1, -\alpha, \beta), \quad \vec{b} = (3, \beta, -\alpha), \quad \vec{c} = (-\alpha, -2, 1) \] Condition 1: \( \vec{a} \cdot \vec{b} = -1 \).
\[ (1)(3) + (-\alpha)(\beta) + (\beta)(-\alpha) = -1 \] \[ 3 - 2\alpha\beta = -1 \Rightarrow \alpha\beta = 2 \] Condition 2: \( \vec{b} \cdot \vec{c} = 10 \).
\[ (3)(-\alpha) + (\beta)(-2) + (-\alpha)(1) = 10 \] \[ -4\alpha - 2\beta = 10 \Rightarrow 2\alpha + \beta = -5 \] Now solve: \[ \beta = -5 - 2\alpha \] \[ \alpha(-5 - 2\alpha) = 2 \] \[ 2\alpha^2 + 5\alpha + 2 = 0 \] \[ (2\alpha + 1)(\alpha + 2) = 0 \] Thus, \( \alpha = -\frac{1}{2} \) or \( \alpha = -2 \). Since \( \alpha \) is an integer, \( \alpha = -2 \).
\[ \beta = \frac{2}{\alpha} = -1 \] Now the vectors become: \[ \vec{a} = (1, 2, -1), \quad \vec{b} = (3, -1, 2), \quad \vec{c} = (2, -2, 1) \] Now compute the scalar triple product: \[ (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix} \] \[ = 1((-1)(1) - (2)(-2)) - 2((3)(1) - (2)(2)) + (-1)((3)(-2) - (-1)(2)) \] \[ = 1(3) - 2(-1) - 1(-4) = 3 + 2 + 4 = 9 \]
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions