We are given three vectors and two conditions. Let us use the conditions to find \( \alpha \) and \( \beta \).
\[
\vec{a} = (1, -\alpha, \beta), \quad
\vec{b} = (3, \beta, -\alpha), \quad
\vec{c} = (-\alpha, -2, 1)
\]
Condition 1: \( \vec{a} \cdot \vec{b} = -1 \).
\[
(1)(3) + (-\alpha)(\beta) + (\beta)(-\alpha) = -1
\]
\[
3 - 2\alpha\beta = -1 \Rightarrow \alpha\beta = 2
\]
Condition 2: \( \vec{b} \cdot \vec{c} = 10 \).
\[
(3)(-\alpha) + (\beta)(-2) + (-\alpha)(1) = 10
\]
\[
-4\alpha - 2\beta = 10 \Rightarrow 2\alpha + \beta = -5
\]
Now solve:
\[
\beta = -5 - 2\alpha
\]
\[
\alpha(-5 - 2\alpha) = 2
\]
\[
2\alpha^2 + 5\alpha + 2 = 0
\]
\[
(2\alpha + 1)(\alpha + 2) = 0
\]
Thus, \( \alpha = -\frac{1}{2} \) or \( \alpha = -2 \).
Since \( \alpha \) is an integer, \( \alpha = -2 \).
\[
\beta = \frac{2}{\alpha} = -1
\]
Now the vectors become:
\[
\vec{a} = (1, 2, -1), \quad
\vec{b} = (3, -1, 2), \quad
\vec{c} = (2, -2, 1)
\]
Now compute the scalar triple product:
\[
(\vec{a} \times \vec{b}) \cdot \vec{c}
= \begin{vmatrix}
1 & 2 & -1 \\
3 & -1 & 2 \\
2 & -2 & 1
\end{vmatrix}
\]
\[
= 1((-1)(1) - (2)(-2)) - 2((3)(1) - (2)(2)) + (-1)((3)(-2) - (-1)(2))
\]
\[
= 1(3) - 2(-1) - 1(-4) = 3 + 2 + 4 = 9
\]