\[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & \beta \\ -1 & 2 & -3 \end{vmatrix} = \hat{i}(-9 - 2\beta) - \hat{j}(-3 + \beta) + \hat{k}(2 + 3) = (-9 - 2\beta)\hat{i} + (3 - \beta)\hat{j} + 5\hat{k} \]
2. Given \( |\vec{b} \times \vec{c}| = 5\sqrt{3} \implies |\vec{b} \times \vec{c}|^2 = 75 \).\[ (9 + 2\beta)^2 + (3 - \beta)^2 + 25 = 75 \]
\[ 81 + 36\beta + 4\beta^2 + 9 - 6\beta + \beta^2 + 25 = 75 \]
\[ 5\beta^2 + 30\beta + 115 = 75 \implies 5\beta^2 + 30\beta + 40 = 0 \implies \beta^2 + 6\beta + 8 = 0 \]
Roots are \( \beta = -2 \) and \( \beta = -4 \).\[ (\hat{i} + 5\hat{j} + \alpha\hat{k}) \cdot (\hat{i} + 3\hat{j} + \beta\hat{k}) = 1 + 15 + \alpha\beta = 16 + \alpha\beta = 0 \implies \alpha\beta = -16 \]
If \( \beta = -2 \), then \( \alpha = 8 \).



