Let $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{b} = \hat{i} - \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$. If $\vec{r}$ is a vector such that $\vec{r} \times \vec{a} = \vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b} = 0$, then $\vec{r} \cdot \vec{a}$ is equal to __________.
Show Hint
If $(\vec{u} - \vec{v}) \times \vec{w} = 0$, you can always write $\vec{u} = \vec{v} + \lambda \vec{w}$. This is the most common way to solve vector equation problems.