Question:

Let \( \vec{a} = 3\vec{i} + \vec{j} - 2\vec{k} \), \( \vec{b} = -5\vec{i} + 7\vec{j} \), and \( \vec{c} = 3\vec{i} + y\vec{j} \) be three vectors such that \( |\vec{a} - \vec{b} + \vec{c}| = \sqrt{141} \). If \( y_1 \) and \( y_2 \) are the values of \( y \) satisfying the given condition, then \( |y_1 - y_2| = \)

Show Hint

Use vector addition and magnitude identity to build and solve a quadratic equation.
Updated On: May 13, 2025
  • \( 12 \)
  • \( 11 \)
  • \( 9 \)
  • \( 8 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Compute \( \vec{a} - \vec{b} + \vec{c} \): \[ (3 + 5 + 3)\vec{i} + (1 - 7 + y)\vec{j} + (-2 + 0 + 0)\vec{k} = 11\vec{i} + (y - 6)\vec{j} - 2\vec{k} \] Magnitude: \[ |\vec{r}| = \sqrt{11^2 + (y - 6)^2 + (-2)^2} = \sqrt{121 + (y - 6)^2 + 4} = \sqrt{125 + (y - 6)^2} \] Set equal to given magnitude: \[ \sqrt{125 + (y - 6)^2} = \sqrt{141} \Rightarrow (y - 6)^2 = 16 \Rightarrow y - 6 = \pm 4 \] \[ y_1 = 10, y_2 = 2 \Rightarrow |y_1 - y_2| = 8 \]
Was this answer helpful?
0
0