We are given:
\[
\vec{a} = 2\hat{i} + \hat{j} - \hat{k}, \quad \vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}
\]
Compute:
\[
3\vec{a} = 6\hat{i} + 3\hat{j} - 3\hat{k}, \quad 2\vec{b} = 2\hat{i} + 6\hat{j} - 10\hat{k}
\]
\[
3\vec{a} - 2\vec{b} = (6 - 2)\hat{i} + (3 - 6)\hat{j} + (-3 + 10)\hat{k} = 4\hat{i} - 3\hat{j} + 7\hat{k}
\]
Now, since the direction of \(\vec{r}\) is **opposite**, we take:
\[
\vec{r} = -k(3\vec{a} - 2\vec{b}) = -k(4\hat{i} - 3\hat{j} + 7\hat{k})
\]
Given \(|\vec{r}| = \sqrt{74}\), we compute:
\[
| -k(4\hat{i} - 3\hat{j} + 7\hat{k}) | = \sqrt{74}
\Rightarrow k \sqrt{(4)^2 + (-3)^2 + (7)^2} = \sqrt{74}
\Rightarrow k \sqrt{74} = \sqrt{74} \Rightarrow k = 1
\]
Hence,
\[
\vec{r} = -1(4\hat{i} - 3\hat{j} + 7\hat{k}) = -4\hat{i} + 3\hat{j} - 7\hat{k}
\]