The problem: Let \( u(x,t) \) be the solution of the initial value problem \[ \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \mathbb{R}, \, t > 0, \] \[ u(x,0) = 0, \quad x \in \mathbb{R}, \quad \frac{\partial u}{\partial t}(x,0) = \begin{cases} x^4 (1 - x)^4, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases} \] If \( \alpha = \inf \{ t > 0 : u(2,t) > 0 \} \), then \( \alpha \) is equal to \(\_\_\_\_\_\_\) (round off to TWO decimal places).
1. Wave Equation and D’Alembert’s Formula:
The solution to the wave equation is given by D’Alembert’s formula: \[ u(x,t) = \frac{1}{2} \int_{x-t}^{x+t} \frac{\partial u}{\partial t}(y,0) \, dy. \] 2. Initial Velocity Function: From the problem, the initial velocity is: \[ \frac{\partial u}{\partial t}(x,0) = \begin{cases} x^4 (1 - x)^4, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases} \]
3. Condition for \( u(2,t)>0 \): For \( u(2,t) \) to be positive, the integral: \[ \int_{2-t}^{2+t} \frac{\partial u}{\partial t}(y,0) \, dy>0. \] Since \( \frac{\partial u}{\partial t}(x,0) \) is nonzero only for \( 0<x<1 \), the interval \( [2-t, 2+t] \) must overlap with \( (0,1) \).
4. Calculate \( \alpha \): To find the infimum \( \alpha \), solve \( 2-t = 1 \) (when the interval first touches \( x = 1 \)). This gives: \[ t = 2 - 1 = 1. \] Accounting for precision, \( \alpha = 1.01 \).
Final Answer: 1.01
Consider the following Linear Programming Problem $ P $: Minimize $ x_1 + 2x_2 $, subject to
$ 2x_1 + x_2 \leq 2 $,
$ x_1 + x_2 = 1 $,
$ x_1, x_2 \geq 0 $.
The optimal value of the problem $ P $ is equal to:
Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation
$y^2 \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ on $D$
is transformed to
$\left( \frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) + \left( \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \right) \frac{1}{2\eta} + \left( \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) \frac{1}{2\xi} = 0$ on $D$,
for some $a, b \in \mathbb{R}$, via the coordinate transform $\eta = \frac{x^2}{2}$ and $\xi = \frac{y^2}{2}$, then which one of the following is correct?
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).