The problem: Let \( u(x,t) \) be the solution of the initial value problem \[ \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in \mathbb{R}, \, t > 0, \] \[ u(x,0) = 0, \quad x \in \mathbb{R}, \quad \frac{\partial u}{\partial t}(x,0) = \begin{cases} x^4 (1 - x)^4, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases} \] If \( \alpha = \inf \{ t > 0 : u(2,t) > 0 \} \), then \( \alpha \) is equal to \(\_\_\_\_\_\_\) (round off to TWO decimal places).
1. Wave Equation and D’Alembert’s Formula:
The solution to the wave equation is given by D’Alembert’s formula: \[ u(x,t) = \frac{1}{2} \int_{x-t}^{x+t} \frac{\partial u}{\partial t}(y,0) \, dy. \] 2. Initial Velocity Function: From the problem, the initial velocity is: \[ \frac{\partial u}{\partial t}(x,0) = \begin{cases} x^4 (1 - x)^4, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases} \]
3. Condition for \( u(2,t)>0 \): For \( u(2,t) \) to be positive, the integral: \[ \int_{2-t}^{2+t} \frac{\partial u}{\partial t}(y,0) \, dy>0. \] Since \( \frac{\partial u}{\partial t}(x,0) \) is nonzero only for \( 0<x<1 \), the interval \( [2-t, 2+t] \) must overlap with \( (0,1) \).
4. Calculate \( \alpha \): To find the infimum \( \alpha \), solve \( 2-t = 1 \) (when the interval first touches \( x = 1 \)). This gives: \[ t = 2 - 1 = 1. \] Accounting for precision, \( \alpha = 1.01 \).
Final Answer: 1.01
Let \( p_1<p_2 \) be the two fixed points of the function \( g(x) = e^x - 2 \), where \( x \in {R} \). For \( x_0 \in {R} \), let the sequence \( (x_n)_{n \geq 1} \) be generated by the fixed-point iteration \[ x_n = g(x_{n-1}), \quad n \geq 1. \] Which one of the following is/are correct?
For an integer \( n \), let \( f_n(x) = xe^{-nx }\), where \( x \in [0, 1] \). Let \( S := \{f_n : n \geq 1\} \). Consider the metric space \( (C([0, 1]), d) \), where \[ d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|, \quad f, g \in C([0, 1]). \] Which of the following statement(s) is/are true?}
Let \( \{(a, b) : a, b \in {R, a<b \} }\) be a basis for a topology \( \tau \) on \( {R} \). Which of the following is/are correct?
Let \( H \) be the subset of \( S_3 \) consisting of all \( \sigma \in S_3 \) such that \[ {Trace}(A_1 A_2 A_3) = {Trace}((A_1 \sigma(A_2) A_3)), \] for all \( A_1, A_2, A_3 \in M_2(\mathbb{C}) \). The number of elements in \( H \) is equal to ……… (answer in integer).
Let \( k \in \mathbb{R} \) and \( D = \{(r, \theta) : 0<r<2, 0<\theta<\pi\ \). Let \( u(r, \theta) \) be the solution of the following boundary value problem \[ \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \quad (r, \theta) \in D, \] \[ u(r, 0) = u(r, \pi) = 0, \quad 0 \leq r \leq 2, \] \[ u(2, \theta) = k \sin(2\theta), \quad 0<\theta<\pi. \] If \( u\left(\frac{1}{4}, \frac{\pi}{4}\right) = 2 \), then the value of \( k \) is equal to ………. (round off to TWO decimal places).