Step 1: Eigenfunctions for the heat equation on $(0,2)$.
With Dirichlet boundaries, separated solutions are
\[
u_n(x,t)=\sin\!\left(\frac{n\pi x}{2}\right)e^{-\left(\frac{n\pi}{2}\right)^2 t}, n=1,2,\ldots
\]
Step 2: Match the initial condition.
$u(x,0)=\sin(\pi x)=\sin\!\left(\frac{2\pi x}{2}\right)$ corresponds to the single mode $n=2$.
Hence
\[
u(x,t)=\sin(\pi x)\,e^{-\pi^2 t}.
\]
Step 3: Evaluate the requested expression.
At $t=1$,
\[
u\!\left(\tfrac{1}{2},1\right)=\sin\!\left(\frac{\pi}{2}\right)e^{-\pi^2}=1 . e^{-\pi^2},
u\!\left(\tfrac{3}{2},1\right)=\sin\!\left(\frac{3\pi}{2}\right)e^{-\pi^2}=-1 . e^{-\pi^2}.
\]
Therefore
\[
e^{\pi^2}\!\left(u\!\left(\tfrac{1}{2},1\right)-u\!\left(\tfrac{3}{2},1\right)\right)
=e^{\pi^2}\!\left(e^{-\pi^2}-(-e^{-\pi^2})\right)=1-(-1)=2.
\]
Final Answer:
\[
\boxed{2}
\]