Step 1: Recognize PDE type.
The given PDE is:
\[
u_t = u_{xx},
\]
which is the classical one-dimensional heat/diffusion equation on $(0,\pi)$ with homogeneous Dirichlet boundary conditions.
Step 2: Eigenfunction expansion.
The general solution is expanded in Fourier sine series:
\[
u(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 t} \sin(nx).
\]
Step 3: Simplify initial condition.
Given initial function:
\[
u(x,0) = 2 \sin\!\left(\tfrac{3x}{2}\right)\cos\!\left(\tfrac{x}{2}\right).
\]
Use identity $2\sin A \cos B = \sin(A+B)+\sin(A-B)$:
\[
u(x,0) = \sin\!\left(\tfrac{3x}{2}+\tfrac{x}{2}\right) + \sin\!\left(\tfrac{3x}{2}-\tfrac{x}{2}\right).
\]
\[
= \sin(2x) + \sin(x).
\]
So the Fourier sine expansion has only terms $\sin(x)$ and $\sin(2x)$.
Step 4: Construct solution.
Thus,
\[
u(x,t) = e^{-1^2 t}\sin(x) + e^{-2^2 t}\sin(2x).
\]
Step 5: Long-time behavior.
As $t \to \infty$, the higher-order exponential terms vanish faster. The smallest eigenvalue ($n=1$) dominates. Hence,
\[
\lim_{t \to \infty} u(x,t) = \sin(x).
\]
Step 6: Evaluate at $x=\tfrac{3\pi{4}$.}
\[
\sin\!\left(\tfrac{3\pi}{4}\right) = \frac{\sqrt{2}}{2} \approx 0.71.
\]
But note: check sign carefully — since $u(x,0)=\sin(2x)+\sin(x)$, both coefficients were $+1$. So indeed final steady dominant term is $+\sin(x)$.
Therefore,
\[
\lim_{t\to\infty} u\!\left(\tfrac{3\pi}{4},t\right) = \sin\!\left(\tfrac{3\pi}{4}\right) = +0.71.
\]
Final Answer:
\[
\boxed{0.71}
\]