Step 1: Domain and substitution.
We need $x > 0$ (so that $\log_2 x$ is defined and $x^u$ makes sense). Let
\[
t=\log_2 x \quad\Rightarrow\quad x=2^t,\qquad
u=t^2-6t+12=(t-3)^2+3.
\]
Step 2: Convert the equation to base 2.
\[
x^u=(2^t)^{\,u}=2^{\,tu}=256=2^8 \quad\Rightarrow\quad tu=8.
\]
Hence
\[
t\,(t^2-6t+12)=8 \ \Rightarrow\ t^3-6t^2+12t-8=0.
\]
Step 3: Factor the cubic.
Notice
\[
(t-2)^3=t^3-6t^2+12t-8,
\]
so
\[
(t-2)^3=0 \ \Rightarrow\ t=2 \ (\text{triple root}).
\]
Step 4: Back-substitute for $x$.
\[
t=\log_2 x=2 \ \Rightarrow\ x=2^2=4.
\]
This yields a single real $x$. (Note $x=1$ would give $u=12$ but $1^{12}\neq 256$.)
\[
\boxed{\text{Exactly one solution: }x=4}
\]