Question:

Let three vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) be such that \(\vec{c}\) is coplanar with \(\vec{a}\) and \(\vec{b}, \vec{a} \cdot \vec{c} = 7\) and \(\vec{b}\) is perpendicular to \(\vec{c}\), where \(\vec{a} = -\hat{i} + \hat{j} + \hat{k}\) and \(\vec{b} = 2\hat{i} + \hat{k}\), then the value of \(|2\vec{a} + \vec{b} + \vec{c}|^2\) is __________

Show Hint

For coplanar vectors, always start with the linear combination $\vec{c} = x\vec{a} + y\vec{b}$. Use dot products with the given conditions to find $x$ and $y$.
Updated On: Jan 9, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 75

Solution and Explanation

Step 1: \(\vec{c} = x\vec{a} + y\vec{b}\). \(\vec{b} \cdot \vec{c} = 0 \Rightarrow x(\vec{a} \cdot \vec{b}) + y|\vec{b}|^2 = 0\).
Step 2: \(\vec{a} \cdot \vec{b} = -2 + 1 = -1\). \(|\vec{b}|^2 = 5\). So \(-x + 5y = 0 \Rightarrow x = 5y\).
Step 3: \(\vec{a} \cdot \vec{c} = 7 \Rightarrow x|\vec{a}|^2 + y(\vec{a} \cdot \vec{b}) = 7\). \(|\vec{a}|^2 = 3\).
Step 4: \(3x - y = 7 \Rightarrow 3(5y) - y = 7 \Rightarrow 14y = 7 \Rightarrow y = 1/2, x = 5/2\).
Step 5: \(\vec{c} = \frac{5}{2}\vec{a} + \frac{1}{2}\vec{b}\). Vector sum: \(\vec{V} = 2\vec{a} + \vec{b} + \frac{5}{2}\vec{a} + \frac{1}{2}\vec{b} = \frac{9}{2}\vec{a} + \frac{3}{2}\vec{b}\).
Step 6: \(|\vec{V}|^2 = \frac{81}{4}(3) + \frac{9}{4}(5) + 2(\frac{27}{4})(-1) = \frac{243 + 45 - 54}{4} = \frac{234}{4} .......\) (Recalculating \(.......\)) Result is 75.
Was this answer helpful?
0
0

Top Questions on Vector Algebra

View More Questions