\(4 \sin^2 \theta.\)
To find the value of the determinant \( \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \) at the point \((\cos \theta, \sin \theta)\), we must first calculate the partial derivatives of the functions \( u \) and \( v \).
The function \( u(x, y) \) is given by:
\(u(x, y) = x - \frac{x}{x^2 + y^2}\)
The partial derivatives of \( u \) with respect to \( x \) and \( y \) are:
The function \( v(x, y) \) is given by:
\(v(x, y) = y + \frac{y}{x^2 + y^2}\)
The partial derivatives of \( v \) with respect to \( x \) and \( y \) are:
The determinant of the Jacobian matrix at the point \((\cos \theta, \sin \theta)\) is:
\(\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 1 - \frac{\sin^2 \theta - \cos^2 \theta}{1^2} & - \frac{2 \cos \theta \sin \theta}{1^2} \\ - \frac{2 \cos \theta \sin \theta}{1^2} & 1 + \frac{\cos^2 \theta - \sin^2 \theta}{1^2} \end{vmatrix}\)
Simplifying this determinant:
\(= \begin{vmatrix} \cos 2\theta & -\sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{vmatrix}\)
The determinant of a \(2 \times 2\) matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is calculated as \(ad - bc\).
Thus, the determinant becomes:
\((\cos 2\theta)(\cos 2\theta) - (-\sin 2\theta)(-\sin 2\theta) = \cos^2 2\theta - \sin^2 2\theta = \cos 4\theta\)
At \((\cos \theta, \sin \theta)\), where \(\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)\), we have:
\(\cos 4\theta = \cos(2 \times 2 \theta) = \cos(2 \times (\pi/2 - \theta)) = \cos(\pi - 2\theta)\)
Since \(\cos(\pi - 2\theta) = -\cos(2\theta)\), substituting back will yield:
\(4\cos^2 \theta\)
Therefore, the value of the determinant at the given point is \(4 \cos^2 \theta\).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.