We are given the difference between two states of stress. The stress states are shown as:
1. First Stress State (square with stresses \( 3\sigma_0 \)):
- In this case, the stress is uniform along both axes in the \( x \)- and \( y \)-directions.
2. Second Stress State (diamond with stresses \( 3\sigma_0 \) along \( x \) and \( y \) at 45\(^\circ\)).
We now need to calculate the resultant stress on all planes perpendicular to the \( x \)-\( y \) plane.
The stress transformation can be done using the following formula for stress on any inclined plane:
\[
\sigma_A/\sigma_B = \frac{\sigma_x + \sigma_y}{2} \pm \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau^2}
\]
Given the stresses:
\[
\sigma_x = 1.5 \sigma_0, \quad \sigma_y = -1.5 \sigma_0, \quad \tau_{xy} = 1.5 \sigma_0
\]
Substituting the values:
\[
\sigma_A/\sigma_B = \frac{1.5 \sigma_0 + (-1.5 \sigma_0)}{2} \pm \frac{1}{2} \sqrt{(1.5 \sigma_0 - (-1.5 \sigma_0))^2 + 4(1.5 \sigma_0)^2}
\]
This simplifies to:
\[
\sigma_A/\sigma_B = \pm \frac{1}{2} \sqrt{(3 \sigma_0)^2 + 4(1.5 \sigma_0)^2}
\]
\[
= \pm \frac{1}{2} \sqrt{9 \sigma_0^2 + 9 \sigma_0^2} = \pm \frac{1}{2} \sqrt{18 \sigma_0^2} = \pm \sqrt{9 \sigma_0^2} = \pm 3 \sigma_0
\]
Thus, the maximum compressive stress is:
\[
k \sigma_0 = 2.1 \sigma_0
\]
Hence, the correct value of \( k \) is: \( \boxed{2.1} \).