Let the mean and variance of 12 observations be \( \frac{9}{2} \) and 4, respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is \( \frac{m}{n} \), where \( m \) and \( n \) are coprime, then \( m + n \) is equal to:
For corrections in statistics, update both the sum and the sum of squares carefully, and recompute the variance using the corrected values.
The mean of the 12 observations is given as:
\[ \frac{\Sigma x}{12} = \frac{9}{2} \implies \Sigma x = 54. \]
The variance of the 12 observations is given as:
\[ \frac{\Sigma x^2}{12} - \left(\frac{\Sigma x}{12}\right)^2 = 4. \]
Substitute \( \Sigma x = 54 \):
\[ \frac{\Sigma x^2}{12} - \left(\frac{9}{2}\right)^2 = 4 \implies \frac{\Sigma x^2}{12} - \frac{81}{4} = 4. \]
Simplify:
\[ \Sigma x^2 = 12 \left(4 + \frac{81}{4}\right) = 12 \cdot \frac{97}{4} = 291. \]
After correction, the observations 9 and 10 are replaced with 7 and 14.
The corrected sum of the observations is:
\[ \Sigma x_{\text{new}} = 54 - (9 + 10) + (7 + 14) = 56. \]
The corrected sum of squares is:
\[ \Sigma x^2_{\text{new}} = 291 - (81 + 100) + (49 + 196) = 355. \]
The corrected variance is:
\[ \sigma^2_{\text{new}} = \frac{\Sigma x^2_{\text{new}}}{12} - \left(\frac{\Sigma x_{\text{new}}}{12}\right)^2. \]
Substitute \( \Sigma x^2_{\text{new}} = 355 \) and \( \Sigma x_{\text{new}} = 56 \):
\[ \sigma^2_{\text{new}} = \frac{355}{12} - \left(\frac{56}{12}\right)^2. \]
Simplify each term:
Thus:
\[ \sigma^2_{\text{new}} = \frac{355}{12} - \frac{49}{36}. \]
Take the LCM of 12 and 36:
\[ \sigma^2_{\text{new}} = \frac{1065}{36} - \frac{49}{36} = \frac{1016}{36}. \]
Simplify the fraction:
\[ \sigma^2_{\text{new}} = \frac{254}{9}. \]
Here, \( m = 254 \) and \( n = 9 \), which are coprime.
Finally, \( m + n = 254 + 9 = 317 \).
If the mean and the variance of 6, 4, a, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then \(a + b + ab\) is equal to:
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
Standard entropies of \(X_2\), \(Y_2\) and \(XY_5\) are 70, 50, and 110 J \(K^{-1}\) mol\(^{-1}\) respectively. The temperature in Kelvin at which the reaction \[ \frac{1}{2} X_2 + \frac{5}{2} Y_2 \rightarrow XY_5 \quad \Delta H = -35 \, {kJ mol}^{-1} \] will be at equilibrium is (nearest integer):
37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]