Let the first term of a geometric progression be \( a \) and the common ratio be \( r \).
The following terms of the GP are given:
\[ \frac{ar^{n-1}}{ar^{m-1}} = \frac{12}{\frac{3}{4}} = 16 \Rightarrow r^{n - m} = 16 \]
To minimize \( r + n - m \), we explore different values of \( r \) and \( n - m \) such that: \[ r^{n - m} = 16 \]
Try values:
\[ \boxed{-2} \]
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: