Let the function \( f(x, y) \) be defined as \[ f(x, y) = \begin{cases} \frac{y}{|y|} \sqrt{2x^2 + 3y^2}, & y \neq 0 \\ 0, & y = 0 \end{cases} \] Then \( \frac{\partial f}{\partial y} (0, 0) \) is equal to
Step 1: Check for continuity and differentiability at \( (0,0) \).
To compute the partial derivative at \( (0, 0) \), we need to evaluate the limit:
\[
\frac{\partial f}{\partial y} (0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h}.
\]
For \( y \neq 0 \), we have:
\[
f(0, h) = \frac{h}{|h|} \sqrt{3h^2} = \sqrt{3} \text{ sign}(h).
\]
Thus,
\[
\frac{\partial f}{\partial y} (0, 0) = \lim_{h \to 0} \frac{\sqrt{3} \text{ sign}(h)}{h} = \sqrt{3}.
\]
Final Answer: \[ \boxed{\text{(B) } \sqrt{3}}. \]
Consider the ordinary differential equation:
The partial differential equation \[ \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = 0 \] is ________.