Let the foot of the perpendicular from the point \( (1, 2, 4) \) on the line \( \frac{x+2}{4} = \frac{y-1}{2} = \frac{z+1}{3} \) be \( P \). Then the distance of \( P \) from the plane \( 3x + 4y + 12z + 23 = 0 \) is:
Show Hint
To calculate the perpendicular distance from a point to a plane, use the formula:
\[
\text{Distance} = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.
\]
Let the coordinates of the foot of the perpendicular \( P(x, y, z) \) be represented by the following relation:
\[
\frac{x+2}{4} = \frac{y-1}{2} = \frac{z+1}{3} = \lambda.
\]
From this, the parametric form of the line is:
\[
(x, y, z) = (4\lambda - 2, 2\lambda + 1, 3\lambda - 1).
\]
Next, the vector \( \overrightarrow{AP} \) from the point \( A(1, 2, 4) \) to \( P \) is given by:
\[
\overrightarrow{AP} = (4\lambda - 3) \hat{i} + (2\lambda - 1) \hat{j} + (3\lambda - 5) \hat{k}.
\]
The direction vector of the line is:
\[
\overrightarrow{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}.
\]
Since \( \overrightarrow{AP} \) is perpendicular to \( \overrightarrow{b} \), their dot product must be zero:
\[
\overrightarrow{AP} \cdot \overrightarrow{b} = 0.
\]
Substituting the expressions:
\[
4(4\lambda - 3) + 2(2\lambda - 1) + 3(3\lambda - 5) = 0.
\]
Simplifying the equation:
\[
16\lambda - 12 + 4\lambda - 2 + 9\lambda - 15 = 0,
\]
\[
29\lambda - 29 = 0.
\]
Solving for \( \lambda \):
\[
\lambda = 1.
\]
Substituting \( \lambda = 1 \) into the parametric equations of the line:
\[
P(2, 3, 2).
\]
Now, we calculate the perpendicular distance from the point \( P(2, 3, 2) \) to the plane \( 3x + 4y + 12z + 23 = 0 \):
\[
\text{Distance} = \frac{|3(2) + 4(3) + 12(2) + 23|}{\sqrt{3^2 + 4^2 + 12^2}}.
\]
Simplifying the numerator:
\[
|6 + 12 + 24 + 23| = 65.
\]
Simplifying the denominator:
\[
\sqrt{9 + 16 + 144} = \sqrt{169} = 13.
\]
Thus, the perpendicular distance is:
\[
\text{Distance} = \frac{65}{13} = 5.
\]
Final Answer:
\[
\boxed{5}
\]