Let the ellipse
\[
E=\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\]
have eccentricity equal to the greatest value of the function
\[
f(t)=-\frac34+2t-t^2
\]
and the length of its latus rectum is $30$.
Find the value of $a^2+b^2$.
Show Hint
For ellipse problems, always connect eccentricity and latus rectum formulas carefully.
Step 1: Find the maximum value of the given function.
\[
f(t)=-t^2+2t-\frac34
\]
This is a downward opening parabola.
Maximum value occurs at
\[
t=\frac{-b}{2a}=\frac{2}{2}=1
\]
\[
f_{\max}=-1+2-\frac34=\frac14
\]
Step 2: Use eccentricity of ellipse.
Given
\[
e^2=\frac14
\Rightarrow e=\frac12
\]
For ellipse,
\[
e^2=1-\frac{b^2}{a^2}
\]
\[
\Rightarrow \frac{b^2}{a^2}=\frac{3}{4}
\Rightarrow a^2-b^2=\frac{a^2}{4}
\]
Step 3: Use latus rectum condition.
Length of latus rectum of ellipse is
\[
\frac{2b^2}{a}=30
\Rightarrow b^2=15a \quad (1)
\]
Step 4: Solve using equations.
From eccentricity relation:
\[
a^2-b^2=\frac{a^2}{4}
\Rightarrow b^2=\frac{3a^2}{4} \quad (2)
\]
From (1) and (2):
\[
15a=\frac{3a^2}{4}
\Rightarrow a^2=256
\Rightarrow a=16
\]
\[
b^2=15a=240
\]
Step 5: Final calculation.
\[
a^2+b^2=256+240=496
\]
Final conclusion.
The required value is 496.