Step 1: For an equilateral triangle, the centroid coincides with the incenter.
The inradius $r$ is the perpendicular distance from the origin $(0,0)$ to the side $x+y-3=0$.
$r = \left| \frac{0+0-3}{\sqrt{1^2+1^2}} \right| = \frac{3}{\sqrt{2}}$.
Step 2: In an equilateral triangle, $R = 2r$.
$R = 2(\frac{3}{\sqrt{2}}) = \frac{6}{\sqrt{2}}$.
Step 3: $R + r = \frac{6}{\sqrt{2}} + \frac{3}{\sqrt{2}} = \frac{9}{\sqrt{2}}$.