t1+t2+....+tn = 2n2+9n+13 → (1)
t1+t2+....+tn-1 = 2(n-1)2+9(n-1)+13 → (2)
From (2) (1), we get tn=(2n2+9n+13)-(2(n-1)2+9(n-1)+13) = 4n+7
Given tk = 103 ⇒ 4k+7 = 103 ⇒ k = 24
LIST I | LIST II | ||
A. | The solution set of the inequality \(-5x > 3, x\in R\), is | I. | \([\frac{20}{7},∞)\) |
B. | The solution set of the inequality is, \(\frac{-7x}{4} ≤ -5, x\in R\) is, | II. | \([\frac{4}{7},∞)\) |
C. | The solution set of the inequality \(7x-4≥0, x\in R\) is, | III. | \((-∞,\frac{7}{5})\) |
D. | The solution set of the inequality \(9x-4 < 4x+3, x\in R\) is, | IV. | \((-∞,-\frac{3}{5})\) |