We are given the sum of the first \( n \) terms of a sequence:
\[ S_n = t_1 + t_2 + \cdots + t_n = 2n^2 + 9n + 13 \tag{1} \]
Sum of the first \( n - 1 \) terms:
\[ S_{n-1} = t_1 + t_2 + \cdots + t_{n-1} = 2(n-1)^2 + 9(n-1) + 13 \tag{2} \]
Using the identity \( t_n = S_n - S_{n-1} \), subtract (2) from (1):
\[ t_n = \left( 2n^2 + 9n + 13 \right) - \left( 2(n - 1)^2 + 9(n - 1) + 13 \right) \]
Expand and simplify the second expression:
\[ 2(n - 1)^2 = 2(n^2 - 2n + 1) = 2n^2 - 4n + 2 \]
9(n - 1) = 9n - 9 \]
So:
\[ t_n = \left( 2n^2 + 9n + 13 \right) - \left( 2n^2 - 4n + 2 + 9n - 9 + 13 \right) = (2n^2 + 9n + 13) - (2n^2 + 5n + 6) = 4n + 7 \]
We are told \( t_k = 103 \), so:
\[ 4k + 7 = 103 \Rightarrow 4k = 96 \Rightarrow k = \frac{96}{4} = \boxed{24} \]
\[ \boxed{k = 24} \]
LIST I | LIST II | ||
A. | The solution set of the inequality \(-5x > 3, x\in R\), is | I. | \([\frac{20}{7},∞)\) |
B. | The solution set of the inequality is, \(\frac{-7x}{4} ≤ -5, x\in R\) is, | II. | \([\frac{4}{7},∞)\) |
C. | The solution set of the inequality \(7x-4≥0, x\in R\) is, | III. | \((-∞,\frac{7}{5})\) |
D. | The solution set of the inequality \(9x-4 < 4x+3, x\in R\) is, | IV. | \((-∞,-\frac{3}{5})\) |