Question:

Let $t_n$ denote the $n^{th}$ term in a binomial expansion. If $ \frac{t_{6}}{t_{5}}$ in the expansion of $(a+ b)^{n+4}$ and $ \frac{t_{5}}{t_{4}}$ in the expansion of $(a + b)^n$ are equal, then $n$ is

Updated On: Apr 8, 2024
  • 9
  • 11
  • 13
  • 15
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$t_{6}$ and $t_{5}$ in the expansion of $(a+b)^{n+4}$ is
$t_{5}=t_{4+1}={ }^{n+4} C_{4} a^{n+4-4} b^{4}={ }^{n+4} C_{4} a^{n} \cdot b^{4}$
and $t_{6}=t_{5+1}={ }^{n+4} C_{5} a^{n+4-5} b^{5}={ }^{n+4} C_{5} a^{n-1} b^{5}$
$\therefore\, \frac{t_{6}}{t_{5}}=\frac{{n+4} C_{5} \cdot a^{n-1} \cdot b^{5}}{{ }^{n+4} C_{4} \cdot a^{n} \cdot b^{4}}$
$=\frac{{ }^{n+4} C_{5}}{{ }^{n+4} C_{4}}\left(\frac{b}{a}\right)=\frac{n}{5}\left(\frac{b}{a}\right)\,\,\,\,\,\,\,\dots(i)$
Now, $t_{5}$ and $t_{4}$ in the expansion of $(a+b)^{n}$ is
$ t_{5}=t_{4+1}={ }^{n} C_{4} \cdot a^{n-4} \cdot b^{4} $
and $t_{4}=t_{3+1}={ }^{n} C_{3} \cdot \hat{a}^{n-3} \cdot b^{3} $
$\therefore \,\frac{t_{5}}{t_{4}}=\frac{{ }^{n} C_{4} \cdot a^{n-4} \cdot b^{4}}{{ }^{n} C_{3} \cdot a^{n-3} \cdot b^{3}}=\frac{n-3}{4} \cdot\left(\frac{b}{a}\right)\,\,\,\,\,\,\,\,\dots(ii)$
On equating Eqs. (i) and (ii), we get
$\frac{n}{5}\left(\frac{b}{a}\right)=\frac{n-3}{4}\left(\frac{b}{a}\right)$
$\Rightarrow \, 4 n=5 n-15$
$\Rightarrow\, n=15$
Was this answer helpful?
0
0

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.