Step 1: Tangents to the helix.
The tangent vector to the helix is the derivative of the position vector:
\[
\mathbf{r}'(t) = -\sin(t) \hat{i} + \cos(t) \hat{j} + \frac{1}{\sqrt{2}} \hat{k}
\]
At \( t = 0 \), the tangent vector is:
\[
\mathbf{r}'(0) = 0 \hat{i} + 1 \hat{j} + \frac{1}{\sqrt{2}} \hat{k}
\]
At \( t = T \), the tangent vector is:
\[
\mathbf{r}'(T) = -\sin(T) \hat{i} + \cos(T) \hat{j} + \frac{1}{\sqrt{2}} \hat{k}
\]
Step 2: Orthogonality condition.
For the tangent at \( t = T \) to be orthogonal to the tangent at \( t = 0 \), their dot product must be zero:
\[
\mathbf{r}'(0) \cdot \mathbf{r}'(T) = 0
\]
Calculating the dot product:
\[
0 \cdot (-\sin(T)) + 1 \cdot \cos(T) + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \cos(T) + \frac{1}{2} = 0
\]
Thus:
\[
\cos(T) = -\frac{1}{2}
\]
Step 3: Solving for \( T \).
The smallest positive \( T \) such that \( \cos(T) = -\frac{1}{2} \) is \( T = \frac{2\pi}{3} \).
Step 4: Line integral.
The line integral is given by:
\[
\int_{0}^{T} \mathbf{F} \cdot d\mathbf{r}(t)
\]
Where \( \mathbf{F} = x \hat{i} - y \hat{j} \) and \( \mathbf{r}(t) = \cos(t) \hat{i} + \sin(t) \hat{j} + \frac{t}{\sqrt{2}} \hat{k} \). The result of the integral gives the value between \( \boxed{2.0} \) and \( \boxed{2.2} \).