We identify the pattern of the given power series:
\[\frac{1}{3} + \frac{x}{5} + \frac{x^2}{3^2} + \frac{x^3}{5^2} + \frac{x^4}{3^3} + \frac{x^5}{5^3} + \frac{x^6}{3^4} + \frac{x^7}{5^4} + \cdots\]
For even (n=2k):
\[a_{2k} = \frac{1}{3^{k+1}}\]
For odd (n=2k+1):
\[a_{2k+1} = \frac{1}{5^{k+1}}\]
\[R = \frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}}\]
Compute limsup for each subsequence:
Even terms:
\[|a_{2k}|^{1/(2k)} = 3^{-(k+1)/(2k)} \to 3^{-1/2}\]
Odd terms:
\[|a_{2k+1}|^{1/(2k+1)} = 5^{-(k+1)/(2k+1)} \to 5^{-1/2}\]
We take the larger of the two limits (since limsup):
\[\limsup |a_n|^{1/n} = 3^{-1/2}\]
Thus:
\[R = \frac{1}{3^{-1/2}} = \sqrt{3}\]
\[r^2 = (\sqrt{3})^2 = 3\]
\[\boxed{3.00}\]