Step 1: Formula for area in polar coordinates.
The area \( A \) enclosed by a curve in polar coordinates is given by:
\[
A = \frac{1}{2} \int_0^{2\pi} r^2 \, d\theta.
\]
Step 2: Substitute \( r = a(1 - \cos\theta) \).
The square of \( r \) is:
\[
r^2 = \left[ a(1 - \cos\theta) \right]^2 = a^2 (1 - 2\cos\theta + \cos^2\theta).
\]
Step 3: Use the trigonometric identity for \( \cos^2\theta \).
Substitute \( \cos^2\theta = \frac{1 + \cos(2\theta)}{2} \):
\[
r^2 = a^2 \left( 1 - 2\cos\theta + \frac{1 + \cos(2\theta)}{2} \right).
\]
Simplify:
\[
r^2 = a^2 \left( \frac{3}{2} - 2\cos\theta + \frac{\cos(2\theta)}{2} \right).
\]
Step 4: Substitute \( r^2 \) into the area formula.
\[
A = \frac{1}{2} \int_0^{2\pi} a^2 \left( \frac{3}{2} - 2\cos\theta + \frac{\cos(2\theta)}{2} \right) d\theta.
\]
Factor out \( a^2 \):
\[
A = \frac{a^2}{2} \int_0^{2\pi} \left( \frac{3}{2} - 2\cos\theta + \frac{\cos(2\theta)}{2} \right) d\theta.
\]
Step 5: Evaluate each term of the integral.
1. The integral of \( \frac{3}{2} \):
\[
\int_0^{2\pi} \frac{3}{2} \, d\theta = \frac{3}{2} \cdot 2\pi = 3\pi.
\]
2. The integral of \( -2\cos\theta \):
\[
\int_0^{2\pi} -2\cos\theta \, d\theta = -2 \cdot \left[ \sin\theta \right]_0^{2\pi} = -2 \cdot (0 - 0) = 0.
\]
3. The integral of \( \frac{\cos(2\theta)}{2} \):
\[
\int_0^{2\pi} \frac{\cos(2\theta)}{2} \, d\theta = \frac{1}{2} \cdot \left[ \frac{\sin(2\theta)}{2} \right]_0^{2\pi} = \frac{1}{4} \cdot (0 - 0) = 0.
\]
Step 6: Combine the results.
\[
A = \frac{a^2}{2} \left( 3\pi + 0 + 0 \right) = \frac{3\pi a^2}{2}.
\]
Step 7: Conclusion.
The area of the cardioid is \( \frac{3\pi a^2}{2} \).