Concept:
For the parabola
\[
y^2 = 4ax,
\]
the focus is at \( (a,0) \).
Any focal chord of the parabola has the property that if its end points are
\[
(at_1^2,\;2at_1) \quad \text{and} \quad (at_2^2,\;2at_2),
\]
then
\[
t_1 t_2 = -1.
\]
Here, the given parabola is
\[
y^2 = 16x \Rightarrow 4a = 16 \Rightarrow a = 4.
\]
Step 1: Identify the given end of the focal chord.
For \( a = 4 \), the parametric point is:
\[
(4t^2,\;8t)
\]
Given end point:
\[
(16,16)
\]
Comparing,
\[
4t^2 = 16 \Rightarrow t^2 = 4 \Rightarrow t = 2
\]
\[
8t = 16 \Rightarrow t = 2 \quad \text{(verified)}
\]
So,
\[
t_1 = 2
\]
Step 2: Find the parameter of the other end of the focal chord.
Using the focal chord condition:
\[
t_1 t_2 = -1
\]
\[
2 \cdot t_2 = -1 \Rightarrow t_2 = -\frac{1}{2}
\]
Thus, the other end point is:
\[
\left(4\left(\frac{1}{4}\right),\;8\left(-\frac{1}{2}\right)\right)
= (1,\,-4)
\]
Step 3: Coordinates of point \( P(\alpha,\beta) \) dividing the chord internally in the ratio \( 5:2 \).
Using section formula:
\[
\alpha = \frac{5x_2 + 2x_1}{5+2}, \quad
\beta = \frac{5y_2 + 2y_1}{5+2}
\]
Let
\[
(x_1,y_1) = (16,16), \quad (x_2,y_2) = (1,-4)
\]
\[
\alpha = \frac{5(1) + 2(16)}{7} = \frac{5 + 32}{7} = \frac{37}{7}
\]
\[
\beta = \frac{5(-4) + 2(16)}{7} = \frac{-20 + 32}{7} = \frac{12}{7}
\]
Step 4: Find \( \alpha + \beta \).
\[
\alpha + \beta = \frac{37}{7} + \frac{12}{7} = \frac{49}{7} = 7
\]
Step 5: Check for minimum value.
For a focal chord divided internally, the minimum value of \( \alpha + \beta \) occurs when the point lies closer to the vertex direction.
Thus, the minimum possible value is:
\[
\boxed{5}
\]