Step 1: Identify parameters of the parabola.
The given parabola is:
\[
y^{2} = 20x \Rightarrow 4a = 20 \Rightarrow a = 5.
\]
Hence, the focus is at:
\[
F(5, 0).
\]
Step 2: Use the property of a focal chord.
One end of the focal chord is given as:
\[
A(20, -20).
\]
Since \( AF \) is a focal chord, the other end \( B(x_2, y_2) \) lies on the parabola and satisfies the property that the focus divides the focal chord in a specific manner.
Step 3: Find the coordinates of the second end \( B \).
Using the focal chord property for \( y^{2} = 4ax \), the second end corresponding to \( (20, -20) \) is:
\[
B(5, 10).
\]
Step 4: Apply the section formula.
Point \( P(\alpha, \beta) \) divides the chord internally in the ratio \( 2:3 \):
\[
\alpha = \frac{2x_2 + 3x_1}{2 + 3}, \quad
\beta = \frac{2y_2 + 3y_1}{2 + 3}.
\]
Substituting:
\[
\alpha = \frac{2(5) + 3(20)}{5} = \frac{10 + 60}{5} = 14,
\]
\[
\beta = \frac{2(10) + 3(-20)}{5} = \frac{20 - 60}{5} = -8.
\]
Step 5: Compute \( \alpha + \beta \).
\[
\alpha + \beta = 14 - 8 = 6.
\]
Step 6: Minimum value conclusion.
Thus, the minimum value of \( \alpha + \beta \) is:
\[
6.
\]