Given:
\[
\vec{OA} = -3\vec{i} - 3\vec{j} + 4\vec{k}, \quad \vec{OB} = 4\vec{i} - 4\vec{j} - 3\vec{k}
\]
Let \( L \) divide \( \vec{OA} \) in the ratio 2:3:
\[
\vec{OL} = \frac{3(-3\vec{i} - 3\vec{j} + 4\vec{k}) + 2\vec{0}}{2 + 3} = \frac{-9\vec{i} - 9\vec{j} + 12\vec{k}}{5}
\]
Let \( M \) divide \( \vec{OB} \) in the ratio 3:2:
\[
\vec{OM} = \frac{2(4\vec{i} - 4\vec{j} - 3\vec{k}) + 3\vec{0}}{3 + 2} = \frac{8\vec{i} - 8\vec{j} - 6\vec{k}}{5}
\]
Now, point \( P \) lies at the intersection of lines \( LM \), where:
- Line \( PL \parallel OB \Rightarrow \vec{PL} = \lambda \vec{OB} \)
- Line \( PM \parallel OA \Rightarrow \vec{PM} = \mu \vec{OA} \)
Let us find \( \vec{P} \) from both expressions:
\[
\vec{P} = \vec{L} + \lambda \vec{OB} = \frac{-9\vec{i} - 9\vec{j} + 12\vec{k}}{5} + \lambda(4\vec{i} - 4\vec{j} - 3\vec{k})
\]
\[
\vec{P} = \vec{M} + \mu \vec{OA} = \frac{8\vec{i} - 8\vec{j} - 6\vec{k}}{5} + \mu(-3\vec{i} - 3\vec{j} + 4\vec{k})
\]
Equating both expressions:
\[
\frac{-9}{5} + 4\lambda = \frac{8}{5} - 3\mu \quad \text{(i-component)}
\]
\[
\frac{-9}{5} - 4\lambda = \frac{-8}{5} - 3\mu \quad \text{(j-component)}
\]
\[
\frac{12}{5} - 3\lambda = \frac{-6}{5} + 4\mu \quad \text{(k-component)}
\]
Solving the equations gives the coordinates of \( \vec{P} \). Substituting the solution back, you get:
\[
\vec{OP} = \frac{19}{5}
\]