We are given: \[ \mathbf{a} = 3\hat{i} + 4\hat{j} - 5\hat{k}, \quad \mathbf{b} = 2\hat{i} + \hat{j} - 2\hat{k} \] Step 1: Find the Vector Perpendicular to the Plane of \( \mathbf{a} \) and \( \mathbf{b} \) The vector perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \) is given by their cross product: \[ \mathbf{n} = \mathbf{a} \times \mathbf{b} \] Using the determinant form for the cross product, \[ \mathbf{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & -5 \\ 2 & 1 & -2 \\ \end{vmatrix} \] \[ \mathbf{n} = \hat{i} \left( 4 \times (-2) - (-5) \times 1 \right) - \hat{j} \left( 3 \times (-2) - (-5) \times 2 \right) + \hat{k} \left( 3 \times 1 - 4 \times 2 \right) \] \[ \mathbf{n} = \hat{i} \left( -8 + 5 \right) - \hat{j} \left( -6 + 10 \right) + \hat{k} \left( 3 - 8 \right) \] \[ \mathbf{n} = -3\hat{i} - 4\hat{j} - 5\hat{k} \] Step 2: Projection of \( \mathbf{a} + \mathbf{b} \) on \( \mathbf{n} \) Let \( \mathbf{p} = \mathbf{a} + \mathbf{b} \). \[ \mathbf{p} = (3\hat{i} + 4\hat{j} - 5\hat{k}) + (2\hat{i} + \hat{j} - 2\hat{k}) = 5\hat{i} + 5\hat{j} - 7\hat{k} \] The projection of \( \mathbf{p} \) on \( \mathbf{n} \) is given by: \[ \text{Proj}_{\mathbf{n}} \mathbf{p} = \frac{\mathbf{p} \cdot \mathbf{n}}{|\mathbf{n}|} \] Calculating the dot product, \[ \mathbf{p} \cdot \mathbf{n} = % Option (5)(-3) + (5)(-4) + (-7)(-5) \] \[ = -15 - 20 + 35 = 0 \] Since the dot product is zero, the projection is zero. Step 3: Final Answer
\[Correct Answer: (1) \ 0\]An inductor and a resistor are connected in series to an AC source of voltage \( 144\sin(100\pi t + \frac{\pi}{2}) \) volts. If the current in the circuit is \( 6\sin(100\pi t + \frac{\pi}{2}) \) amperes, then the resistance of the resistor is: